// Copyright 2022 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package abt import ( "fmt" "strconv" "testing" ) func makeTree(te *testing.T, x []int32, check bool) (t *T, k int, min, max int32) { t = &T{} k = 0 min = int32(0x7fffffff) max = int32(-0x80000000) history := []*T{} for _, d := range x { d = d + d // double everything for Glb/Lub testing. if check { history = append(history, t.Copy()) } t.Insert(d, stringer(fmt.Sprintf("%v", d))) k++ if d < min { min = d } if d > max { max = d } if !check { continue } for j, old := range history { s, i := old.wellFormed() if s != "" { te.Errorf("Old tree consistency problem %v at k=%d, j=%d, old=\n%v, t=\n%v", s, k, j, old.DebugString(), t.DebugString()) return } if i != j { te.Errorf("Wrong tree size %v, expected %v for old %v", i, j, old.DebugString()) } } s, i := t.wellFormed() if s != "" { te.Errorf("Tree consistency problem at %v", s) return } if i != k { te.Errorf("Wrong tree size %v, expected %v for %v", i, k, t.DebugString()) return } if t.Size() != k { te.Errorf("Wrong t.Size() %v, expected %v for %v", t.Size(), k, t.DebugString()) return } } return } func applicInsert(te *testing.T, x []int32) { makeTree(te, x, true) } func applicFind(te *testing.T, x []int32) { t, _, _, _ := makeTree(te, x, false) for _, d := range x { d = d + d // double everything for Glb/Lub testing. s := fmt.Sprintf("%v", d) f := t.Find(d) // data if s != fmt.Sprint(f) { te.Errorf("s(%v) != f(%v)", s, f) } } } func applicBounds(te *testing.T, x []int32) { t, _, min, max := makeTree(te, x, false) for _, d := range x { d = d + d // double everything for Glb/Lub testing. s := fmt.Sprintf("%v", d) kg, g := t.Glb(d + 1) kge, ge := t.GlbEq(d) kl, l := t.Lub(d - 1) kle, le := t.LubEq(d) // keys if d != kg { te.Errorf("d(%v) != kg(%v)", d, kg) } if d != kl { te.Errorf("d(%v) != kl(%v)", d, kl) } if d != kge { te.Errorf("d(%v) != kge(%v)", d, kge) } if d != kle { te.Errorf("d(%v) != kle(%v)", d, kle) } // data if s != fmt.Sprint(g) { te.Errorf("s(%v) != g(%v)", s, g) } if s != fmt.Sprint(l) { te.Errorf("s(%v) != l(%v)", s, l) } if s != fmt.Sprint(ge) { te.Errorf("s(%v) != ge(%v)", s, ge) } if s != fmt.Sprint(le) { te.Errorf("s(%v) != le(%v)", s, le) } } for _, d := range x { d = d + d // double everything for Glb/Lub testing. s := fmt.Sprintf("%v", d) kge, ge := t.GlbEq(d + 1) kle, le := t.LubEq(d - 1) if d != kge { te.Errorf("d(%v) != kge(%v)", d, kge) } if d != kle { te.Errorf("d(%v) != kle(%v)", d, kle) } if s != fmt.Sprint(ge) { te.Errorf("s(%v) != ge(%v)", s, ge) } if s != fmt.Sprint(le) { te.Errorf("s(%v) != le(%v)", s, le) } } kg, g := t.Glb(min) kge, ge := t.GlbEq(min - 1) kl, l := t.Lub(max) kle, le := t.LubEq(max + 1) fmin := t.Find(min - 1) fmax := t.Find(max + 1) if kg != NOT_KEY32 || kge != NOT_KEY32 || kl != NOT_KEY32 || kle != NOT_KEY32 { te.Errorf("Got non-error-key for missing query") } if g != nil || ge != nil || l != nil || le != nil || fmin != nil || fmax != nil { te.Errorf("Got non-error-data for missing query") } } func applicDeleteMin(te *testing.T, x []int32) { t, _, _, _ := makeTree(te, x, false) _, size := t.wellFormed() history := []*T{} for !t.IsEmpty() { k, _ := t.Min() history = append(history, t.Copy()) kd, _ := t.DeleteMin() if kd != k { te.Errorf("Deleted minimum key %v not equal to minimum %v", kd, k) } for j, old := range history { s, i := old.wellFormed() if s != "" { te.Errorf("Tree consistency problem %s at old after DeleteMin, old=\n%stree=\n%v", s, old.DebugString(), t.DebugString()) return } if i != len(x)-j { te.Errorf("Wrong old tree size %v, expected %v after DeleteMin, old=\n%vtree\n%v", i, len(x)-j, old.DebugString(), t.DebugString()) return } } size-- s, i := t.wellFormed() if s != "" { te.Errorf("Tree consistency problem at %v after DeleteMin, tree=\n%v", s, t.DebugString()) return } if i != size { te.Errorf("Wrong tree size %v, expected %v after DeleteMin", i, size) return } if t.Size() != size { te.Errorf("Wrong t.Size() %v, expected %v for %v", t.Size(), i, t.DebugString()) return } } } func applicDeleteMax(te *testing.T, x []int32) { t, _, _, _ := makeTree(te, x, false) _, size := t.wellFormed() history := []*T{} for !t.IsEmpty() { k, _ := t.Max() history = append(history, t.Copy()) kd, _ := t.DeleteMax() if kd != k { te.Errorf("Deleted maximum key %v not equal to maximum %v", kd, k) } for j, old := range history { s, i := old.wellFormed() if s != "" { te.Errorf("Tree consistency problem %s at old after DeleteMin, old=\n%stree=\n%v", s, old.DebugString(), t.DebugString()) return } if i != len(x)-j { te.Errorf("Wrong old tree size %v, expected %v after DeleteMin, old=\n%vtree\n%v", i, len(x)-j, old.DebugString(), t.DebugString()) return } } size-- s, i := t.wellFormed() if s != "" { te.Errorf("Tree consistency problem at %v after DeleteMax, tree=\n%v", s, t.DebugString()) return } if i != size { te.Errorf("Wrong tree size %v, expected %v after DeleteMax", i, size) return } if t.Size() != size { te.Errorf("Wrong t.Size() %v, expected %v for %v", t.Size(), i, t.DebugString()) return } } } func applicDelete(te *testing.T, x []int32) { t, _, _, _ := makeTree(te, x, false) _, size := t.wellFormed() history := []*T{} missing := t.Delete(11) if missing != nil { te.Errorf("Returned a value when there should have been none, %v", missing) return } s, i := t.wellFormed() if s != "" { te.Errorf("Tree consistency problem at %v after delete of missing value, tree=\n%v", s, t.DebugString()) return } if size != i { te.Errorf("Delete of missing data should not change tree size, expected %d, got %d", size, i) return } for _, d := range x { d += d // double vWant := fmt.Sprintf("%v", d) history = append(history, t.Copy()) v := t.Delete(d) for j, old := range history { s, i := old.wellFormed() if s != "" { te.Errorf("Tree consistency problem %s at old after DeleteMin, old=\n%stree=\n%v", s, old.DebugString(), t.DebugString()) return } if i != len(x)-j { te.Errorf("Wrong old tree size %v, expected %v after DeleteMin, old=\n%vtree\n%v", i, len(x)-j, old.DebugString(), t.DebugString()) return } } if v.(*sstring).s != vWant { te.Errorf("Deleted %v expected %v but got %v", d, vWant, v) return } size-- s, i := t.wellFormed() if s != "" { te.Errorf("Tree consistency problem at %v after Delete %d, tree=\n%v", s, d, t.DebugString()) return } if i != size { te.Errorf("Wrong tree size %v, expected %v after Delete", i, size) return } if t.Size() != size { te.Errorf("Wrong t.Size() %v, expected %v for %v", t.Size(), i, t.DebugString()) return } } } func applicIterator(te *testing.T, x []int32) { t, _, _, _ := makeTree(te, x, false) it := t.Iterator() for !it.Done() { k0, d0 := it.Next() k1, d1 := t.DeleteMin() if k0 != k1 || d0 != d1 { te.Errorf("Iterator and deleteMin mismatch, k0, k1, d0, d1 = %v, %v, %v, %v", k0, k1, d0, d1) return } } if t.Size() != 0 { te.Errorf("Iterator ended early, remaining tree = \n%s", t.DebugString()) return } } func equiv(a, b interface{}) bool { sa, sb := a.(*sstring), b.(*sstring) return *sa == *sb } func applicEquals(te *testing.T, x, y []int32) { t, _, _, _ := makeTree(te, x, false) u, _, _, _ := makeTree(te, y, false) if !t.Equiv(t, equiv) { te.Errorf("Equiv failure, t == t, =\n%v", t.DebugString()) return } if !t.Equiv(t.Copy(), equiv) { te.Errorf("Equiv failure, t == t.Copy(), =\n%v", t.DebugString()) return } if !t.Equiv(u, equiv) { te.Errorf("Equiv failure, t == u, =\n%v", t.DebugString()) return } v := t.Copy() v.DeleteMax() if t.Equiv(v, equiv) { te.Errorf("!Equiv failure, t != v, =\n%v\nand%v\n", t.DebugString(), v.DebugString()) return } if v.Equiv(u, equiv) { te.Errorf("!Equiv failure, v != u, =\n%v\nand%v\n", v.DebugString(), u.DebugString()) return } } func tree(x []int32) *T { t := &T{} for _, d := range x { t.Insert(d, stringer(fmt.Sprintf("%v", d))) } return t } func treePlus1(x []int32) *T { t := &T{} for _, d := range x { t.Insert(d, stringer(fmt.Sprintf("%v", d+1))) } return t } func TestApplicInsert(t *testing.T) { applicInsert(t, []int32{24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25}) applicInsert(t, []int32{1, 2, 3, 4}) applicInsert(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9}) applicInsert(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}) applicInsert(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}) applicInsert(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}) applicInsert(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24}) applicInsert(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2}) } func TestApplicFind(t *testing.T) { applicFind(t, []int32{24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25}) applicFind(t, []int32{1, 2, 3, 4}) applicFind(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9}) applicFind(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}) applicFind(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}) applicFind(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}) applicFind(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24}) applicFind(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2}) } func TestBounds(t *testing.T) { applicBounds(t, []int32{24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25}) applicBounds(t, []int32{1, 2, 3, 4}) applicBounds(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9}) applicBounds(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}) applicBounds(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}) applicBounds(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}) applicBounds(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24}) applicBounds(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2}) } func TestDeleteMin(t *testing.T) { applicDeleteMin(t, []int32{1, 2, 3, 4}) applicDeleteMin(t, []int32{24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25}) applicDeleteMin(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9}) applicDeleteMin(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}) applicDeleteMin(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}) applicDeleteMin(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}) applicDeleteMin(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24}) applicDeleteMin(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2}) } func TestDeleteMax(t *testing.T) { applicDeleteMax(t, []int32{24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25}) applicDeleteMax(t, []int32{1, 2, 3, 4}) applicDeleteMax(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9}) applicDeleteMax(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}) applicDeleteMax(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}) applicDeleteMax(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}) applicDeleteMax(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24}) applicDeleteMax(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2}) } func TestDelete(t *testing.T) { applicDelete(t, []int32{24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25}) applicDelete(t, []int32{1, 2, 3, 4}) applicDelete(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9}) applicDelete(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}) applicDelete(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}) applicDelete(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}) applicDelete(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24}) applicDelete(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2}) } func TestIterator(t *testing.T) { applicIterator(t, []int32{1, 2, 3, 4}) applicIterator(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9}) applicIterator(t, []int32{24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25}) applicIterator(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}) applicIterator(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}) applicIterator(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}) applicIterator(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24}) applicIterator(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2}) } func TestEquals(t *testing.T) { applicEquals(t, []int32{1, 2, 3, 4}, []int32{4, 3, 2, 1}) applicEquals(t, []int32{24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25}, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}) applicEquals(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}) applicEquals(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24}, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2}) } func first(x, y interface{}) interface{} { return x } func second(x, y interface{}) interface{} { return y } func alwaysNil(x, y interface{}) interface{} { return nil } func smaller(x, y interface{}) interface{} { xi, _ := strconv.Atoi(fmt.Sprint(x)) yi, _ := strconv.Atoi(fmt.Sprint(y)) if xi < yi { return x } return y } func assert(t *testing.T, expected, got *T, what string) { s, _ := got.wellFormed() if s != "" { t.Errorf("Tree consistency problem %v for 'got' in assert for %s, tree=\n%v", s, what, got.DebugString()) return } if !expected.Equiv(got, equiv) { t.Errorf("%s fail, expected\n%vgot\n%v\n", what, expected.DebugString(), got.DebugString()) } } func TestSetOps(t *testing.T) { A := tree([]int32{1, 2, 3, 4}) B := tree([]int32{3, 4, 5, 6, 7}) AIB := tree([]int32{3, 4}) ADB := tree([]int32{1, 2}) BDA := tree([]int32{5, 6, 7}) AUB := tree([]int32{1, 2, 3, 4, 5, 6, 7}) AXB := tree([]int32{1, 2, 5, 6, 7}) aib1 := A.Intersection(B, first) assert(t, AIB, aib1, "aib1") if A.Find(3) != aib1.Find(3) { t.Errorf("Failed aliasing/reuse check, A/aib1") } aib2 := A.Intersection(B, second) assert(t, AIB, aib2, "aib2") if B.Find(3) != aib2.Find(3) { t.Errorf("Failed aliasing/reuse check, B/aib2") } aib3 := B.Intersection(A, first) assert(t, AIB, aib3, "aib3") if A.Find(3) != aib3.Find(3) { // A is smaller, intersection favors reuse from smaller when function is "first" t.Errorf("Failed aliasing/reuse check, A/aib3") } aib4 := B.Intersection(A, second) assert(t, AIB, aib4, "aib4") if A.Find(3) != aib4.Find(3) { t.Errorf("Failed aliasing/reuse check, A/aib4") } aub1 := A.Union(B, first) assert(t, AUB, aub1, "aub1") if B.Find(3) != aub1.Find(3) { // B is larger, union favors reuse from larger when function is "first" t.Errorf("Failed aliasing/reuse check, A/aub1") } aub2 := A.Union(B, second) assert(t, AUB, aub2, "aub2") if B.Find(3) != aub2.Find(3) { t.Errorf("Failed aliasing/reuse check, B/aub2") } aub3 := B.Union(A, first) assert(t, AUB, aub3, "aub3") if B.Find(3) != aub3.Find(3) { t.Errorf("Failed aliasing/reuse check, B/aub3") } aub4 := B.Union(A, second) assert(t, AUB, aub4, "aub4") if A.Find(3) != aub4.Find(3) { t.Errorf("Failed aliasing/reuse check, A/aub4") } axb1 := A.Union(B, alwaysNil) assert(t, AXB, axb1, "axb1") axb2 := B.Union(A, alwaysNil) assert(t, AXB, axb2, "axb2") adb := A.Difference(B, alwaysNil) assert(t, ADB, adb, "adb") bda := B.Difference(A, nil) assert(t, BDA, bda, "bda") Ap1 := treePlus1([]int32{1, 2, 3, 4}) ada1_1 := A.Difference(Ap1, smaller) assert(t, A, ada1_1, "ada1_1") ada1_2 := Ap1.Difference(A, smaller) assert(t, A, ada1_2, "ada1_2") } type sstring struct { s string } func (s *sstring) String() string { return s.s } func stringer(s string) interface{} { return &sstring{s} } // wellFormed ensures that a red-black tree meets // all of its invariants and returns a string identifying // the first problem encountered. If there is no problem // then the returned string is empty. The size is also // returned to allow comparison of calculated tree size // with expected. func (t *T) wellFormed() (s string, i int) { if t.root == nil { s = "" i = 0 return } return t.root.wellFormedSubtree(nil, -0x80000000, 0x7fffffff) } // wellFormedSubtree ensures that a red-black subtree meets // all of its invariants and returns a string identifying // the first problem encountered. If there is no problem // then the returned string is empty. The size is also // returned to allow comparison of calculated tree size // with expected. func (t *node32) wellFormedSubtree(parent *node32, keyMin, keyMax int32) (s string, i int) { i = -1 // initialize to a failing value s = "" // s is the reason for failure; empty means okay. if keyMin >= t.key { s = " min >= t.key" return } if keyMax <= t.key { s = " max <= t.key" return } l := t.left r := t.right lh := l.height() rh := r.height() mh := max(lh, rh) th := t.height() dh := lh - rh if dh < 0 { dh = -dh } if dh > 1 { s = fmt.Sprintf(" dh > 1, t=%d", t.key) return } if l == nil && r == nil { if th != LEAF_HEIGHT { s = " leaf height wrong" return } } if th != mh+1 { s = " th != mh + 1" return } if l != nil { if th <= lh { s = " t.height <= l.height" } else if th > 2+lh { s = " t.height > 2+l.height" } else if t.key <= l.key { s = " t.key <= l.key" } if s != "" { return } } if r != nil { if th <= rh { s = " t.height <= r.height" } else if th > 2+rh { s = " t.height > 2+r.height" } else if t.key >= r.key { s = " t.key >= r.key" } if s != "" { return } } ii := 1 if l != nil { res, il := l.wellFormedSubtree(t, keyMin, t.key) if res != "" { s = ".L" + res return } ii += il } if r != nil { res, ir := r.wellFormedSubtree(t, t.key, keyMax) if res != "" { s = ".R" + res return } ii += ir } i = ii return } func (t *T) DebugString() string { if t.root == nil { return "" } return t.root.DebugString(0) } // DebugString prints the tree with nested information // to allow an eyeball check on the tree balance. func (t *node32) DebugString(indent int) string { s := "" if t.left != nil { s = s + t.left.DebugString(indent+1) } for i := 0; i < indent; i++ { s = s + " " } s = s + fmt.Sprintf("%v=%v:%d\n", t.key, t.data, t.height_) if t.right != nil { s = s + t.right.DebugString(indent+1) } return s }